TIME AND RISTANCE SOLUTION

A and B are 20 km apart. A can walk at an average speed of $4 \mathrm{~km} / \mathrm{hr}$ and B at $6 \mathrm{~km} / \mathrm{h}$. If they start walking towards each other at 7:000 am, when they will meet?

- Solution
- Suppose they will meet after T hours.

Distance $=$ Speed \times Time
Sum of distance traveled by them after T hours
$6 \mathrm{~T}+4 \mathrm{~T}=20 \mathrm{~km}$
$\mathrm{T}=2$ hours.
So they will meet at 7:00 AM +2 hours $=9: 00 \mathrm{AM}$

A plane flies along the four sides of a square field at a speed of 200, 400, 600 and $800 \mathrm{~km} / \mathrm{hr}$. Then find the average speed of plane around the square field.

- Solution
- Let the side of the square field be x and the average speed of plane be y
$\mathrm{x} / 200+\mathrm{x} / 400+\mathrm{x} / 600+\mathrm{x} / 800=4 \mathrm{x} / \mathrm{y}$
$\Rightarrow 25 \mathrm{x} / 2400=4 \mathrm{x} / \mathrm{y}$
$\Rightarrow \mathrm{y}=384$
\therefore Average speed is $384 \mathrm{~km} / \mathrm{hr}$

Laxman has to cover a distance of 6 km in 45 minutes. If he cover one half of the distance in $2 / 3^{\text {rd }}$ time. what should be his speed to cover the remaining distance in the remaining time?

- Solution

- \because Time left $=(1 / 3 \mathrm{X} 45 / 60) \mathrm{hr}$.
$=1 / 4 \mathrm{hr}$.
Distance left $=3 \mathrm{~km}$
\therefore speed required $=[3 /(1 / 4)] \mathrm{km} / \mathrm{hr}$.
$=3 \mathrm{x} 4$
$=12 \mathrm{~km} / \mathrm{hr}$.

To reach school half an hour early, Meera has to increase her speed to $7 / 4$ of her usual speed. How much time does she take every day to reach the school?

- Solution
- We know, Distance travelled is same both times.
- $\therefore \mathrm{D}=\mathrm{D}$
$\bullet \therefore S x T=\frac{7 S}{4} x(T-30)$
- $\therefore 4 \mathrm{~T}=7 \mathrm{~T}-210$
- $\therefore \mathrm{T}=70 \mathrm{~min}$

Two cities Alipur and Balipur are 72 km apart. Arun and Varun who stay at Alipur start riding on bicycle to Balipur. Arun travels at a speed of 17 kmph while Varun's speed is 2 kmph more than Arun. Varun was riding faster, so he reaches Balipur early and returns immediately. On his way back he meets Arun at Chandipur. How far is Chandipur from Balipur?

- To make things easy, let's set some notations:Alipur - A ; Balipur - B; Chandipur - C

Let distance between A and C be ' z '
\therefore Distance between B and $\mathrm{C}=72-\mathrm{z}$
Distance travelled by Arun $=\mathrm{AC}=\mathrm{zkm}$
Distance travelled by Varun $=\mathrm{AB}+\mathrm{BC}=(72+(72-\mathrm{z}))=(144-\mathrm{z}) \mathrm{km}$

- We know, time for both is same
- $\therefore \mathrm{T}=\mathrm{T}$
- $\therefore \frac{z}{17}=\frac{144-z}{19}$
- $\therefore \mathrm{z}=68 \mathrm{~km}$
- \therefore Distance between B and $C=72-z=72-68=4 \mathrm{~km}$
- Now, if it is asked to calculate total distance travelled by Varun before meeting Arun, do as follows -
- Distance travelled by Varun before meeting Arun $=\mathrm{AB}+\mathrm{BC}=72+4=76 \mathrm{~km}$

A dog sees a cat 80 m away. The cat runs at a speed of $5 \mathrm{~m} / \mathrm{s}$ while the dog chases it

 at a speed $2 \mathrm{~m} / \mathrm{s}$ more than that of cat. Before the dog is able to catch the cat, how much distance has it already run?- Let distance travelled by cat before dog catches it be D
- We know, time for which Dog and Cat ran is same
- $\therefore \mathrm{T}=\mathrm{T}$
$\because \therefore \frac{D}{5}=\frac{D+80}{7}$
- $\therefore \mathrm{D}=200 \mathrm{~m}$

Ramesh says, "Driving at an average speed of 60 kmph , I reach office 10 minutes early. However, if I drive at a speed 10 kmph lesser than the earlier, I get late by half an hour". Find the distance between Ramesh's office and home.

- Solution
- Let distance be D
- With speed $50 \mathrm{~km} / \mathrm{hr}$ (10 kmph less than the earlier 60 kmph), he is 30 minutes late
- With speed $60 \mathrm{~km} / \mathrm{hr}$ he is 10 minutes early
- \therefore Difference between two times $=30+10=40 \mathrm{~min}=\frac{40}{60}$ hours
- lso, time $=T=\frac{D}{S}$
- $\frac{D}{50}-\frac{D}{60}=\frac{40}{60}$
- $\therefore \mathrm{D}=80 \mathrm{~km}$

Two stations P and Q are 330 km apart. A train leaves the station A at 8 am and runs towards B at 60 kmph . Another train travels from B to A at a speed 75 kmph . What would be the time by the watch when the two trains meet?

- Solution

- Suppose they meet x hrs after 8 a.m .

Then (Distance moved by first in x hrs) + (Distance moved by second in ($\mathrm{x}-1$) hrs] $=330$
$60 \mathrm{x}+75(\mathrm{x}-1)=330$
$\mathrm{x}=3$
So , they meet at $(8+3)$, i.e. 11 a.m

A train running at the speed of $60 \mathrm{~km} / \mathrm{hr}$ crosses a pole in 9 seconds. What is the length of the train?

- Explanation:
- Speed $=60 \times \frac{5}{18} \mathrm{~m} / \mathrm{sec} \quad=\frac{50}{3} \mathrm{~m} / \mathrm{sec}$.
- Length of the train $=($ Speed \times Time $)$.
- Length of the train $=\frac{50}{3} \times 9 \mathrm{~m}=150 \mathrm{~m}$.

Two trains running in opposite directions cross a man standing on the platform in 27 seconds and 17 seconds respectively and they cross each other in 23 seconds. The ratio of their speeds is:

- Solution
- Let the speeds of the two trains be $\mathrm{x} \mathrm{m} / \mathrm{sec}$ and $\mathrm{y} \mathrm{m} / \mathrm{sec}$ respectively.
- Then, length of the first train $=27 x$ metres, and length of the second train $=17 y$ metres.

$$
\frac{27 x+17 y}{x+y}=23
$$

- $27 x+17 y=23 x+23 y$
- $4 x=6 y$
- $\frac{x}{y}=\frac{3}{2}$

